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In quantum neutrinodynamics (photon-neutrino weak coupling) all the renor- 
malization constants vanish and therefore the field equations cannot be ex- 
pressed in terms of unrenormalized field quantities. This helps us to formulate 
quantum neutrinodynamics as a convergent quantum field theory. It is also 
pointed out that from the viewpoint of the unified model of weak and electro- 
magnetic interaction as developed on the basis of the photon-neutrino weak 
coupling by Bandyopadhyay, quantum electrodynamics also manifests itself as a 
convergent field theory. 

1. I N T R O D U C T I O N  

The work  of Tomonga ,  Schwinger,  and  F e y n m a n  led to a miles tone in 
the deve lopment  of quan tum field theory.  So far as the renormal iza t ion  field 
theory  is concerned  we are accus tomed to divergence difficulties,  but  we 
expect  finite unambiguous  results  for exper imenta l ly  observable  quanti t ies .  
However ,  in pe r tu rba t ion  theory,  the renormal iza t ion  cons tan ts  are inf ini te  
so that  each calcula t ion of a physical  quan t i ty  has an inf ini ty  bur ied  in it. 
Whe the r  this inf ini ty  is a disease of the ma themat i ca l  techniques of  per-  
tu rba t ion  expansions,  or  whether  it is a s y m p t o m  of the ills accompany ing  
the ideal iza t ion of  a con t inuum theory we do  not  know. 
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In recent times, there has arisen much interest in the formulation of a 
finite quantum field theory. From the auxiliary field concept Pauli and 
Villars (1949) tried to developa finite and self-consistent field theory. But in 
any case this is absolutely an ad hoc manipulation of the theory. It is well 
known that the divergences in quantum electrodynamics (QED) associated 
with the unrenormahzed theory can be lumped into the vertex, wave 
function, and coupling constant renormalization constants Z1, Z 2, and Z 3 
and 8m, respectively. By a suitable choice of the gauge parameter (gener- 
alized Landau gauge) the gauge-dependent constants Zt = Z 2 are rendered 
finite. But it is to be emphasized that in quantum electrodynamics within 
the framework of the perturbation theory (QEDP), Z~ -I diverges to all 
orders as shown by Gell-Mann and Low (1954). For Z 3 finite they imposed 
an eigenvalue condition 

~(~0) =0 

and determined the asymptotic coupling a o rather than the physical cou- 
pling a. But the condition a < a 0, from the spectral function positivity, 
leaves a as a free parameter. This remarkable conclusion was reached in the 
subsequent work of Johnson and Baker (1969), who showed that if Z 3 is 
finite, the renormalization constant Z 2 and the bare mass of the electron m o 
can also be finite. Johnson, Baker, and Willey (1964, 1967) also studied 
photon propagators without photon self-energy insertions. By introducing a 
cutoff A 2 they defined the unrenormalized photon propagator and photon 
self-energy in the asymptotic region and finally derived the necessary 
condition for Z 3 =~ 0. Following the procedure of Coleman and Jackiw 
(1971), Adler and Bardeen (1971) derived the Callan-Symanzik equation 
(Callan, 1970; Symanzik, 1970) and showed that the unrenormalized m0, z2, 
and ~r(k 2) become finite by introducing an ultraviolet and infrared cutoffs 
by A 2 and/~2, respectively. Now the short-distance behavior of the photon 
propagator is considered within the context of the corresponding 
Callan-Symanzik equation. Maris and Dillenburg (1970) studied the con- 
nection between the field theory and the perturbation expansion procedure 
of QED, considering the bare spinor mass and Z 3 equal to zero. The theory 
does not contain any constant of Nature and is dilatational and gauge 
invariant, both invariances being spontaneously broken. The vanishing of 
the bare spinor mass is a necessary condition for the mass normalization to 
be finite and the resulting dilatational invariance of the theory is attractive 
from the general point of view. 

In this paper, we shall show that quantum neutrinodynamics (QND) 
incorporating the photon-neutrino weak coupling as suggested by 
Bandyopadhyay (1968) is indeed inherently convergent, and suggests the 
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introduction of a fundamental length in Nature. Again, if we take into 
account the unified picture of weak and electromagnetic interaction on the 
basis of the dynamical origin of charge and mass of the electron (or muon), 
and the consequent space-time quantization as suggested in earlier papers 
(Bandyopadhyay, 1973; 1974), we can have an electrodynamics where the 
fundamental interaction is the photon-neutr ino weak coupling so that QED 
becomes a convergent theory (Bandyopadhyay and Roy, 1976). 

2. FINITE QUANTUM FIELD THEORY: 
NEUTRINODYNAMICS 

In the recent past, Bandyopadhyay (1974) showed that the photon-  
neutrino weak coupling theory has certain characteristic features. In fact, 
the theory is "renormalizable" in the conventional sense and there is no 
unitarity catastrophe in the high-energy processes. Moreover, this helps to 
represent the photon as a composite state of neutrino-antineutrino pair 
both from the field theoretic (Bandyopadhyay and Raychaudhuri, 1971) and 
Bethe-Salpeter formalism (Sarkar et al., 1975). The fundamental criterion 
for this compositeness condition Z3 = 0 is found to be uniquely satisfied in 
neutrinodynamics (Sarkar et al., 1975). Again, because of the conservation 
of the two-component neutrino current, the Ward-Takahasi  identity holds 
and as a result we have Z I = Z 2. Maris and Dillenburg (1970) have studied 
QED, taking the vanishing bare spinor mass and Z 3 = 0. They have shown 
that in this special case Z~ = Z 2 = 0 in all physical gauges. Evidently this 
result is valid in our present case too and thus in neutrinodynamics we get 
the interesting result that all the renormalization constants become zero. We 
write here explicitly the renormalized quantities: 

= ( 1 )  

= (2) 

A , = Z  31/2 ~) A~ (3) 

g = Z~ tZ2Z~/2g~") (4) 

where ,~ is the two-component neutrino wave functions and the superscript 
(u) stands for the unrenormalized value. 

For completeness, we recapitulate here the derivation of the Z 3 = 0 
condition in neutrinodynamics as discussed in Bandyopadhyay and 
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Raychaudhuri (1971). It is to be remarked here that photons can interact 
weakly only with massless two-component neutrinos (Bandyopadhyay, 1968) 
having an interaction lagrangian of the form 

L t = ig(b'tt,q~A~, 

= ig~y~,(1 + Ts) ~bA. 

Here r is the two-component neutrino wave function, q~ is the four-compo- 
nent function defined as 

= �89 + ~,~) 

and g is the photon-neutr ino weak coupling constant. Analyzing QEDP in 
a similar way, we can use the following spectral representation to calculate 
Z31 for neutrinodynamics: 

z;' = f0=do2 0R(o 2) (5) 

where 

p . ( o ~ ) = ~ ( o ~ ) +  g~ ~ l 
12~r----50(o )" o- 5 

with 

0(O2) =1, 0 2 > 0  

=0 ,  0 2 < 0  

Here g is the renormalized photon-neutr ino weak coupling constant. 
It is noted that here we come across the same divergence difficulties as 

in QEDP and these have to be removed by cutoffs. That is, apart from the 
dependence of Z 3 on the mass and coupling constant, Z 3 is also dependent 
on the cutoff factor, and we write in a generalized form 

fo d M  2 z;'=l+ a~(M~,g,,,,o) M~ 

where m 0 is the renormalized photon mass. 
However, it is to be observed that for two-component neutrinos, the 

renormalized mass as well as the bare mass is zero. The vanishing of the 
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physical and bare mass of neutrinos is ensured by the fact that the total 
lagrangian for the photon-neutr ino weak interaction is invariant under the 
transformation 

r ~ exp(ia~5) ~b 

which shows that the interaction term does not contribute to any mass 
effect. Considering that the physical mass of a neutrino is zero, we note that 
the renormalized photon mass m c must be identically zero. This follows 
from the fact that if a photon composed of a pair consisting of a massless 
neutrino and antineutrino attains a certain mass due to interaction, it will be 
unstable and should decay spontaneously into a neutrino-antineutrino pair. 
However, this is in contradiction to the fact that a real photon having a rest 
mass, however small, cannot interact weakly with neutrinos. Indeed, this is 
because if a weak interaction of massive photons is allowed, we cannot 
forbid a priori a gauge-noninvariant interaction such as igg/e't~,(1 + ~5)lPeAtx 
depicting the weak interaction of photons with electrons. But this leads to a 
contradiction, for in that case, photons in an external field should create 
electron-positron pairs both electromagnetically and weakly, which is ab- 
surd. So the weak interaction of a photon behaving as a particle of nonzero 
rest mass must be forbidden. Thus zero is essentially an isolated point of the 
spectrum of p2 for the photon field. This shows that in neutrinodynamics, 
the vanishing of Z s can arise from the functional dependence on the 
external parameters. Thus the main difficulty which crops up in using the 
condition in QEDP is removed in neutrinodynamics. 

Now we note that the unique result Z ~ = Z  2 = Z  3 = 0  in neutri- 
nodynamics does not allow us to write the Lagrangian using the unrenor- 
malized field quantities. In this context here we calculate the neutrino 
self-energy and photon self-energy in QND. 

(a) Neutrino Self-Energy. Here we calculate the second-order self- 
energy diagram in neutrinodynamics. The neutrino self-energy diagram is 
shown in Figure 1. According to the photon-neutr ino weak coupling theory, 
the photon-neutr ino weak interaction is given by the Lagrangian 

L, = ig~:y~,q~A~, (6) 

where g ( = 1 0 - 1 ~  is the photon-neutr ino weak coupling constant 
(Bandyopadhyay, 1968) and r is the two-component spinor. In fact from 
the condition Z 1 = Z 2 = Z 3 = 0 and from the relations (1)-(4), we note that 
the unrenormalized field quantities q,~") and A~ u) become zero so that the 
physical field quantities r and A~ become finite. In fact, this suggests that 
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Fig. 1. Neutrino self-energy diagram of second order. 

the Lagrangian cannot be expressed in terms of unrenormalized field 
quantities and so the term "renormalization" here bears a special meaning, 
indicating just the existence of normalized field quantities q}, and Ar in the 
physical world. However, the condition g = Z [  1Z2Z~/2g~176 with Z I = Z 2 = 
Z 3 = 0 suggests that the unrenormali7ed coupling constant g(U) must be 
infinite to have the interaction Lagrangian (6) meaningful. Thus the ex- 
istence of the Lagrangian (6) is determined simply by the condition gt~) = o0. 
Having considered this, we now transform q~, into a four-component spinor 
qJ, by the relation 

, .  =�89 + vs)+. (v) 

the interaction Lagrangian can be written as 

L, = ig ( ; r . (1  + (8) 

This Lagrangian is invariant under the transformation 

+---}exp(iays)~ (9) 

which suggests that the interaction term does not contribute to any mass 
effect. This suggests that the bare mass as well as the physical mass of a 
neutrino is zero. Considering rn t")= 0 and Z 3 = 0  we can replace the 
Lagrangian in a more generalized form by expressing it term by term in 
perturbation theory: 

LI 

With 

= clio )--'~ Z(~2) h ( x '  en(~))++2r 

- (vacuum expectation value) (lo) 
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and n c~) being a unit vector in the direction of the/~th axis, c represents a 
bound on nonlocal interaction. Here the upper index of h indicates that it is 
symmetric under the two commuting operations of charge conjugation while 
the lower index indicates the Hermitian conjugation, i.e., 

h+=�88 +c) 
q~ is a spectral function which has the following property: 

~+(x,,.) =~(x , - , . )  

and 

h + ( x , e n )  = - h ( x ,  cn) (13) 

Now, we calculate the selGenergy diagram (Figure 1) in the conven- 

• ( p ) =  ig---~2 f'&(l+'rs) p l~_~ y~,(l+'rs)~-~2 d4k 
(2~') 4 

(14) 

where d = 7~a.. Following the usual procedures, we can reduce the expres- 
sion for E ( p )  to the form 

E(P)=4~-2 ,Tr --  "o [ k 2 + p 2 x ( 1 - x ) ]  
(15) 

It is here noted that the spectral representation of the neutrino propa- 
gator with vanishing bare and physical mass is given by 

1 p 

O'(p) z, (16) 

As considered earlier, if we replace the renormalization constant Z 1 by a 
gauge-dependent function Z(c 2) where ~ ~ 0, as discussed by Maris and 
DiUenburg (1970) we have Z(0) = Z l = Z 2. So in the limiting process we can 
write the expression (16) as 

1 p , 

O'(p) z ~  2) ~0 

This suggests that in the limit c ~ 0, p2 ~ 0 for G~(p) to be finite. 

(12) 

tional way. We write the contribution of the diagram by the expression 
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This shows that for ZI = 0 p2 must vanish even when the neutrino is in 
the virtual state. That is, in the virtual state the neutrino should be on the 
mass shell. This suggests that in the self-energy diagram (Figure 1), the 
four-momentum square of the virtual neutrino ( p  - k)2 should tend to zero 
in the limiting process c ~ 0. Now from the relations p2 ___, 0, (p  - k)  2 ~ 0 
as ~ ~ 0 where p is the four-momentum of the initial neutrino and k is the 
four-momentum of the virtual photon, we have the additional constraint 
that since the virtual neutrino is on the mass shell, Ik] ~< k 0 < Po. Thus the 
expression (15) is found to take the form, putting c 2 = x(1 - x)  and trans- 
forming the integral in the Euclidean space, 

f d2k p2 oo ikl3 dlk[ 
(k2 + p2c2)2 -Fro (ik12 + p2c2)2 

which behaves as p21n po 2 - p21n p2 because of the condition Ikl ~< Ik04 < Po- 
So we see that in the limit p 2 --* 0, the expression (15) vanishes. Thus we get 
the interesting result that the self-energy diagram vanishes in neutri- 
nodynamics. 

It may be remarked here that the compositeness condition Z 3 = 0 
actually suggests that any trilinear coupling (Yukawa type of coupling) can 
be reduced to a four-fermion Fermi coupling. But in the trilinear 
photon-neutr ino weak coupling ig~y~,ep~A~, = ig~3'~(1 + 7s)~b~A~, the cou- 
pling constant g is dimensionless, whereas when we reduce it to the 
four-fermion coupling of neutrino currents, the coupling constants have the 
dimension (mass)-2. However, in neutrinodynamics all the fields are mass- 
less and so the theory is dilatational invariant. Hence, the self-consistency of 
the theory requires that we must introduce the dimension of mass in the 
theory; otherwise when the interaction of the composite photon with the 
neutrino current is written in the form of a four-fermion Fermi coupling 
the theory becomes meaningless. So, to have a meaningful theory of 
neutrinodynamics, we must introduce the notion of fundamental length l 0 in 
nature. 

The theory of Q N D  has a dilatational symmetry and so the fundamen- 
tal length should show up when the symmetry is broken. In a previous paper 
(Bandyopadhyay, 1973) we have shown that the mass (as well as charge) of 
a lepton can be achieved through a nonlocal field theoretic interaction of 
photons and neutrinos when symmetry is spontaneously broken. In this 
picture space-time quantized domain with a fundamental length is the seat 
of a charged and massive lepton. This helps us to have a unified theory of 
weak and electromagnetic interactions and the spontaneous breakdown of 
dilatational symmetry appears when a charged and massive lepton is 
generated through nonlocal interactions so that the dimension of a funda- 
mental length 10 is specified. 
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Fig. 2. Photon self-energy diagram of second order in neutrinodynamics. 

(b) Photon Self-Energy. The scattering matrix in the perturbation 
expansion can be integrated by the use of the conventional Feynman rules 
and we can easily differentiate these from "ad hoc" rules generally used in 
specific calculation which are valid for all orders of perturbation expansion. 
Hence, on the basis of the aforesaid picture the gauge variant photon 
self-energy arises in second order. Now we consider the photon self-energy 
diagram in neutrinodynamics (Figure 2). Here the two-coruer loop yields 
the symmetric tensor %~(k) in momentum space which must be Lorentz 
invariant as well as gauge invariant. Now the insertion of a photon 
self-energy into an internal photon line has the effect of replacing the 
photon propagation function Do(k ) by another functions Z3D(k ). So, for 
the second-order self-energy parts, the photon propagator takes the form 

Z3D( k ) = Do(k)+ Do( k )g2cr~,~( k )D( k ) (18) 

and 

r kp-k2g~.~)c(k 2) (19) 

These suggest that 

lim ~r~(k) = 0 (20) 
k ~ O  

In neutrinodynamics, for the compositeness condition Z 3 = 0 we have 

Doz.(k) = (k.k  ) 2 k k 2 -g~'" k -  (21) 

and that 

g2cr~( k )Dp~( k )+ [~ k,k~k 2 -g~.~) = 0  (22) 



686 Bandyopadhyay et. al. 

which represents an equation for the photon propagator. The solution of 
equation (22) is 

( k~,k~ ) k~,k~ 
D~,~(k)=~ k2 -g , ,  g-2c- ' (k2)k-a-a" k'  (23) 

Here the term a. kuk~/k 4 comes out in the following manner. The solution 
of equation (22) contains an additive form (k~,k,/k2)D~,(k) because this 
component is annihilated by a (g~,,k 2 -  k~,k,) factor occurring in ir~(k). 
So, a. k~,k,/k 4 is a gauge-dependent factor, where a stands for the gauge 
parameter. 

The second-order diagram contains at most vertices, each with a 
parameter e which is finally brought to zero. If there are divergent diagrams 
the e limits of different diagrams are not independent. The prescription is to 
number the o's in each diagram to take the o's with same number in 
different diagram equal to sum the diagrams, and to bring first E 2 and 
finally c I to zero. We now apply these rules to the second-order photon 
self-energy diagram. As a result this gives a quadratically divergent, Lorentz- 
and gauge-noncovariant contribution which cancels exactly the well-known 
quadratic divergence of the second-order diagram, resulting in a gauge- and 
Lorentz-invariant vacuum polarization. Hence, the photon propagator may 
be written in the form: 

(24) 

Now adopting the usual technique of Maris et al. (1968), we can write 
the expression of %.(k)  for the second-order photon self-energy in the 
following form: 

~t.,(k)-- ig2 lim lim fd4pcos[(2p-k).~]cos[(2p-k)~c~] 
(2~r) 4 4 - .0  ,~-.0 

(25) 

where 

$ ( k , c " ) -  sin kc~ 
ke~' 

(26) 
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After detailed calculation equation (25) reduces to the form 

,~;(k)- ig2 ~ fd'p[8(k,,~)] ~ (2,,)' r 

X c o s [ ( 2 p -  k)~:{'] p2-p'k  
p2.(p-k)2 (27) 

The difficulty that now arises from equation (27) is that it does not lead to 
the equation (20), a violation of gauge invariance. However, the usual 
deduction of ~r~(0) * 0 from equation (27) is invalid because this deduction 
involves an unjustified interchange of the limit k --+ 0 with p integration. If 
this interchange is carried out a confluence of the poles of the integrand 
results and the integral diverges. Moreover, the above result ensures a 
gauge-invariant equation (20). This can be seen as follows: 

It is well known that the Feynman contour is equivalent to 

1 1 
- - +  i , ,8(p ~ + A ~) (28) 

p 2 + A  2_i~'-+ p p 2 + A  2 

where the integration is performed along the real P0 axis and P denotes the 
Cauchy principal value. Using equation (28) in equation (27) and equating 
the real and imaginary parts we have 

R e [ r r ~ ( k ) ] = -  g2 lira Pfd'pd4p'cos[(2p-k)~][8(k,,~)] 2 
27r 3 d'-'o " 

8(p '~ + a ~) ] 
XS(p-p'-k)(p,p'+2A2)[8(p2+-ff~ l+ A2 

[ p,2 + A 2 p2 + 1 
(29) 

and 

ImTr~(k)= g___~_2 lim fd2pd4p'8(p-p.'-k)(p,p'+2A2)[8(k,~] 2 
2~ 4 q ---, 0 

X cos[(2p - k)~,, c{*] 

[ 1 1 ,:8(p2+A 2) ~(p'2+ A2)] (30) x Pp2+A2Pp,2+A-------~ 



688 Bandyopadhyay et. al. 

This' imaginary part is to vanish for k = O. Now our object is to show 
that the real part is also a vanishing quantity; in order to derive the 
condition we know that 

P ff(x) 8(x) dx -- o (31)  

for all functions f(x) which have at most a simple pole at x = 0. The 
Cauchy principal part requires an integral over an interval which excludes 
exactly the nonvanishing contribution of the 3 function. Thus, the limit 
k ~ 0 can here even be interchange with the integration, so 

Re[~r~(0)] = - - -  
g2 
~r3 ~moPfd4p(p2+2A2)8(p2+A2) 

p2 + A 2 

= 0 (32) 

Thus the photon self-energy vanishes and the gauge-invariance requirement 
(20) is satisfied. Moreover, from equation (24) it is evident that Z(E 2) = 0, 
i.e., Z~ = Z 2 = 0. 

Hence we arrive at a very significant conclusion in QND that all the 
renormalization constant become zero and as such all the unrenormalized 
quantities disappear from the field equation. This special feature makes 
QND a finite field theory. 

3. DISCUSSION 

We have shown above that the theory of QND has the most interesting 
property that all the renormalization constants Z I = Z 2 = Z 3 = 0, which 
forbids the field equations to be expressed in terms of unrenormalized field 
quantities. This makes the conventional notion of renormalization here 
meaningless. This is a significant result in quantum field theory as we know 
that in perturbation theory of QED the renormalization constants are 
infinite so that each calculation of a physical quantity has an infinity buried 
in it. Thus the theory of quantum neutrinodynamics avoids the inconsisten- 
cies inherent in renormalization procedure and represents a quantum field 
theory devoid of divergences. 

Again from the viewpoint of a unified model of weak and electromag- 
netic interaction, based on the concept of dynamical origin of charge and 
mass of an electron (Bandyopadhyay, 1973a), it becomes evident that QND 
is the basic field theory and an electron is created by n number of 
photon-neutr ino weak interactions at different space-time points and the 
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quan t iza t ion  of charge  in units  of  e is re la ted  to the quan t iza t ion  of  
space- t ime (Bandyopadhyay ,  1973, 1974). Since the bas ic  field theory  is 
Q N D ,  so the unif ied model  of  weak and e lec t romagnet ic  in te rac t ion  sug- 
gests that  Q E D  is also convergent  as mani fes ted  in Q N D .  
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